google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: 21 Summary of other measurements

Monday, January 10, 2022

21 Summary of other measurements

 

21.9 Gas sensing and analysis

Gas sensing and analysis is required in many applications. A primary role of gas sensing is in hazard monitoring to predict the onset of conditions where flammable gases are reaching dangerous concentrations. Danger is quantified in terms of the lower explosive level, which is usually reached when the concentration of gas in air is in the range of between 1% and 5%.

as sensing also provides a fire detection and prevention function. When materials burn, a variety of gaseous products result. Most sensors that are used for fire detection measure carbon monoxide concentration, as this is the most common combustion product. Early fire detection enables fire extinguishing systems to be triggered, preventing serious damage from occurring in most cases. However, fire prevention is even better than early fire detection, and solid-state sensors, based on a sintered mass of polycrystalline tin oxide, can now detect the gaseous products (generally various types of hydrocarbon) that are generated when materials become hot but before they actually burn.

Health and safety legislation creates a further requirement for gas sensors. Certain gases, such as carbon monoxide, hydrogen sulphide, chlorine and nitrous oxide, cause fatalities above a certain concentration and sensors must provide warning of impending danger. For other gases, health problems are caused by prolonged exposure and so the sensors in this case must integrate gas concentration over time to determine whether the allowable exposure limit over a given period of time has been exceeded. Again, solid-state sensors are now available to fulfill this function.

Concern about general environmental pollution is also making the development of gas sensors necessary in many new areas. Legislation is growing rapidly to control the emission of everything that is proven or suspected to cause health problems or environmental damage. The present list of controlled emissions includes nitrous oxide, oxides of sulphur, carbon monoxide and dioxide, CFCs, ammonia and hydrocarbons. Sensors are required both at the source of these pollutants, where concentrations are high, and also to monitor the much lower concentrations in the general environment. Oxygen concentration measurement is often of great importance also in pollution control, as the products of combustion processes are greatly affected by the air/fuel ratio.

Sensors associated with pollution monitoring and control often have to satisfy quite stringent specifications, particularly where the sensors are located at the pollutant source. Robustness is usually essential, as such sensors are subjected to bombardment from a variety of particulate matters, and they must also endure conditions of high humidity and temperature. They are also frequently located in inaccessible locations, such as in chimneys and flues, which means that they must have stable characteristics over long periods of time without calibration checks being necessary. The need for such high-specification sensors makes such pollutant-monitoring potentially very expensive if there are several problem gases involved. However, because the concentration of all output gases tends to vary to a similar extent according to the condition of filters etc., it is frequently only necessary to measure the concentration of one gas, from which the concentration of other gases can be predicted reliably. This greatly reduces the cost involved in such monitoring.

A number of devices that sense, measure the concentration of or analyse gases exist. In terms of frequency of usage, they vary from those that have been in use for a number of years, to those that have appeared recently, and finally to those that are still under research and development. In the following list of devices, their status in terms of current usage will be indicated. Fuller information can be found in Jones (1989).

 

21.9.1 Catalytic (calorimetric) sensors

Catalytic sensors, otherwise known as calorimetric sensors, have widespread use for measuring the concentration of flammable gases. Their principle of operation is to measure the heat evolved during the catalytic oxidation of reducing gases. They are cheap and robust but are unsuitable for measuring either very low or very high gas concentrations. The catalysts that have been commonly used in these devices in the past are adversely affected by many common industrial substances such as lead, phosphorus, silicon and sulphur, and this catalyst poisoning has previously prevented this type of device being used in many applications. However, new types of poison-resistant catalyst are now becoming available that are greatly extending the applicability of this type of device.

 

21.9.2 Paper tape sensors

By moving a paper tape impregnated with a reagent sensitive to a specific gas (e.g. lead acetate tape to detect hydrogen sulphide) through an air stream, the time history of the concentration of gas is indicated by the degree of colour change in the tape. This is used as a low accuracy but reliable and cheap means of detecting the presence of hydrogen sulphide and ammonia.

 

21.9.3 Liquid electrolyte electrochemical cells

These consist of two electrodes separated by electrolyte, to which the measured air supply is directed through a permeable membrane, as shown in Figure 21.15. The gas in the air to which the cell is sensitive reacts at the electrodes to form ions in the solution. This produces a voltage output from the cell.

Electrochemical cells have stable characteristics and give good measurement sensitivity. However, they are expensive and their durability is relatively poor, with life being generally limited to about one or two years at most. A further restriction is that they cannot be used above temperatures of about 50°C, as their performance deteriorates rapidly at high temperatures because of interference from other atmospheric substances.

The main use of such cells is in measuring toxic gases in satisfaction of health and safety legislation. Versions of the cell for this purpose are currently available to measure carbon monoxide, chlorine, nitrous oxide, hydrogen sulphide and ammonia. Cells to measure other gases are currently under development.


In addition, electrochemical cells are also used to a limited extent to monitor carbon monoxide emissions in flue gases for environmental control purposes. Pre-cooling of the emitted gases is a necessary condition for this application.

 

21.9.4 Solid-state electrochemical cells (zirconia sensor)

At present, these cells are used only for measuring oxygen concentration, but ways of extending their use to other gases are currently in progress. The oxygen-measurement cell consists of two chambers separated by a zirconia wall. One chamber contains gas with a known oxygen concentration and the other contains the air being measured. Ions are conducted across the zirconia wall according to the difference in oxygen concentration across it and this produces an output e.m.f. The device is rugged but requires high temperatures to operate efficiently. It is, however, well proven and a standard choice for oxygen measurement. In industrial uses, it is often located in chimneystacks, where quite expensive mounting and protection systems are needed. However, very low cost versions (around £200) are now used in some vehicle exhaust systems as part of the engine management system.

 

21.9.5 Catalytic gate FETs

These consist of field effect transistors with a catalytic, palladium gate that is sensitive to hydrogen ions in the environment. The gate voltage, and hence characteristics of the device, change according to the hydrogen concentration. They can be made sensitive to gases such as hydrogen sulphide, ammonia and hydrocarbons as well as hydrogen. They are cheap and find application in workplace monitoring, in satisfaction of health and safety legislation, and in fire detection (mainly detecting hydrocarbon products).

 

21.9.6 Semiconductor (metal oxide) sensors

In these devices use is made of the fact that the surface conductivity of semiconductor metal oxides (generally tin or zinc oxides) changes according to the concentration of certain gases with which they are in contact. Unfortunately, they have a similar response for the range of gases to which they are sensitive. Hence, they show that a gas is present but not which one. Such sensors are cheap, robust, very durable and sensitive to very low gas concentrations. However, because their discrimination between gases is low and their accuracy in quantitative measurement is poor, they are mainly used only for qualitative indication of gas presence. In this role, they are particularly useful for fire prevention in detecting the presence of the combustion products that occur in low concentrations when the temperature starts to rise due to a fault.

 

21.9.7 Organic sensors

These work on similar principles to metal oxide semiconductors but use an organic surface layer that is designed to respond selectively to only one gas. At present, these devices are still the subjects of ongoing research, but industrial exploitation is anticipated in the near future. They promise to be cheap and have high stability and sensitivity.

 

21.9.8 Piezoelectric devices

In these devices, piezoelectric crystals are coated with an absorbent layer. As this layer absorbs gases, the crystal undergoes a change in resonant frequency that can be measured. There is no discrimination in this effect between different gases but the technique potentially offers a high sensitivity mechanism for detecting gas presence. At the present time, problems of finding a suitable type of coating material where absorption is reversible have not been generally solved, and the device only finds limited application at present for measuring moisture concentrations.

 

21.9.9 Infra-red absorption

This technique uses infra-red light at a particular wavelength that is directed across a chamber between a source and detector. The amount of light absorption is a function of the unknown gas concentration in the chamber. The instrument normally has a second chamber containing gas at a known concentration across which infra-red light at the same wavelength is directed to provide a reference. Sensitivity to carbon monoxide, carbon dioxide, ammonia or hydrocarbons can be provided according to the wavelength used. Microcomputers are now routinely incorporated in the instrument to reduce its sensitivity to gases other than the one being sensed and so improve measurement accuracy. The instrument finds widespread use in chimney/flue emission monitoring and in general process measurements.

 

21.9.10 Mass spectrometers

The mass spectrometer is a laboratory device for analysing gases. It first reduces a gas sample to a very low pressure. The sample is then ionized, accelerated and separated into its constituent components according to the respective charge-to-mass ratios. Almost any mixture of gases can be analysed and the individual components quantified, but the instrument is very expensive and requires a skilled user. Mass spectrometers have existed for over half a century but recent advances in electronic data processing techniques have greatly improved their performance.

 

21.9.11 Gas chromatography

This is also a laboratory instrument in which a gaseous sample is passed down a packed column. This separates the gas into its components, which are washed out of the column in turn and measured by a detector. Like the mass spectrometer, the instrument is versatile but expensive and it requires skilled use.


No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)