google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: Choosing appropriate measuring instruments

Monday, November 15, 2021

Choosing appropriate measuring instruments

1.4 Choosing appropriate measuring instruments :

The starting point in choosing the most suitable instrument to use for measurement of a particular quantity in a manufacturing plant or other system is the specification of the instrument characteristics required, especially parameters like the desired measure[1]ment accuracy, resolution, sensitivity and dynamic performance (see next chapter for definitions of these). It is also essential to know the environmental conditions that the instrument will be subjected to, as some conditions will immediately either eliminate the possibility of using certain types of instrument or else will create a requirement for expensive protection of the instrument. It should also be noted that protection reduces the performance of some instruments, especially in terms of their dynamic charac[1]teristics (for example, sheaths protecting thermocouples and resistance thermometers reduce their speed of response). Provision of this type of information usually requires the expert knowledge of personnel who are intimately acquainted with the operation of the manufacturing plant or system in question. Then, a skilled instrument engineer, having knowledge of all the instruments that are available for measuring the quantity in question, will be able to evaluate the possible list of instruments in terms of their accuracy, cost and suitability for the environmental conditions and thus choose the most appropriate instrument. As far as possible, measurement systems and instruments should be chosen that are as insensitive as possible to the operating environment, although this requirement is often difficult to meet because of cost and other perfor[1]mance considerations. The extent to which the measured system will be disturbed during the measuring process is another important factor in instrument choice. For example, significant pressure loss can be caused to the measured system in some techniques of flow measurement.

 

Published literature is of considerable help in the choice of a suitable instrument for a particular measurement situation. Many books are available that give valuable assistance in the necessary evaluation by providing lists and data about all the instru[1]ments available for measuring a range of physical quantities (e.g. Part 2 of this text). However, new techniques and instruments are being developed all the time, and there[1]fore a good instrumentation engineer must keep abreast of the latest developments by reading the appropriate technical journals regularly.

 

The instrument characteristics discussed in the next chapter are the features that form the technical basis for a comparison between the relative merits of different instruments. Generally, the better the characteristics, the higher the cost. However, in comparing the cost and relative suitability of different instruments for a particular measurement situation, considerations of durability, maintainability and constancy of performance are also very important because the instrument chosen will often have to be capable of operating for long periods without performance degradation and a requirement for costly maintenance. In consequence of this, the initial cost of an instrument often has a low weighting in the evaluation exercise.

 

Cost is very strongly correlated with the performance of an instrument, as measured by its static characteristics. Increasing the accuracy or resolution of an instrument, for example, can only be done at a penalty of increasing its manufacturing cost. Instru[1]ment choice therefore proceeds by specifying the minimum characteristics required by a measurement situation and then searching manufacturers’ catalogues to find an instrument whose characteristics match those required. To select an instrument with characteristics superior to those required would only mean paying more than necessary for a level of performance greater than that needed.

 

As well as purchase cost, other important factors in the assessment exercise are instrument durability and the maintenance requirements. Assuming that one had £10 000 to spend, one would not spend £8000 on a new motor car whose projected life was five years if a car of equivalent specification with a projected life of ten years was available for £10 000. Likewise, durability is an important consideration in the choice of instruments. The projected life of instruments often depends on the conditions in which the instrument will have to operate. Maintenance requirements must also be taken into account, as they also have cost implications.

 

As a general rule, a good assessment criterion is obtained if the total purchase cost and estimated maintenance costs of an instrument over its life are divided by the period of its expected life. The figure obtained is thus a cost per year. However, this rule becomes modified where instruments are being installed on a process whose life is expected to be limited, perhaps in the manufacture of a particular model of car. Then, the total costs can only be divided by the period of time that an instrument is expected to be used for, unless an alternative use for the instrument is envisaged at the end of this period.

 

To summarize therefore, instrument choice is a compromise between performance characteristics, ruggedness and durability, maintenance requirements and purchase cost. To carry out such an evaluation properly, the instrument engineer must have a wide knowledge of the range of instruments available for measuring particular physical quan[1]tities, and he/she must also have a deep understanding of how instrument characteristics are affected by particular measurement situations and operating conditions.


No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)