google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: 13 Sensor technologies

Monday, December 27, 2021

13 Sensor technologies

 

13.8 Optical sensors (fibre-optic)

As an alternative to using air as the transmission medium, optical sensors can use fibre-optic cable instead to transmit light between a source and a detector. In such sensors, the variable being measured causes some measurable change in the characteristics of the light transmitted by the cable. However, the problems and solutions that were described in Chapter 8 for fibre-optic signal transmission, in ensuring that the proportion of light entering the cable is maximized, apply equally when optical fibres are used as sensors.

The basis of operation of fibre-optic sensors is the translation of the physical quantity measured into a change in one or more parameters of a light beam. The light parameters that can be modulated are one or more of the following:

intensity

phase

polarization

wavelength

transmission time.

Fibre-optic sensors usually incorporate either glass/plastic cables or all plastic cables. All glass types are rarely used because of their fragility. Plastic cables have particular advantages for sensor applications because they are cheap and have a relatively large diameter of 0.5–1.0 mm, making connection to the transmitter and receiver easy. However, plastic cables should not be used in certain hostile environments where they may be severely damaged. The cost of the fibre-optic cable itself is insignificant for sensing applications, as the total cost of the sensor is dominated by the cost of the transmitter and receiver.

Fibre-optic sensors characteristically enjoy long life. For example, the life expectancy of reflective fibre-optic switches is quoted at ten million operations. Their accuracy is also good, with, for instance, ±1% of full-scale reading being quoted as a typical inaccuracy level for a fibre-optic pressure sensor. Further advantages are their simplicity, low cost, small size, high reliability and capability of working in many kinds of hostile environment.

Two major classes of fibre-optic sensor exist, intrinsic sensors and extrinsic sensors. In intrinsic sensors, the fibre-optic cable itself is the sensor, whereas in extrinsic sensors, the fibre-optic cable is only used to guide light to/from a conventional sensor.

 

13.8.1 Intrinsic sensors

Intrinsic sensors can modulate either the intensity, phase, polarization, wavelength or transit time of light. Sensors that modulate light intensity tend to use mainly multimode fibres, but only monomode cables are used to modulate other light parameters. A particularly useful feature of intrinsic fibre-optic sensors is that they can, if required, provide distributed sensing over distances of up to 1 metre.

Light intensity is the simplest parameter to manipulate in intrinsic sensors because only a simple source and detector are required. The various forms of switches shown in Figure 13.7 are perhaps the simplest form of these, as the light path is simply blocked and unblocked as the switch changes state.

Modulation of the intensity of transmitted light takes place in various simple forms of proximity, displacement, pressure, pH and smoke sensors. Some of these are sketched in Figure 13.8. In proximity and displacement sensors (the latter are often given the special name fotonic sensors), the amount of reflected light varies with the distance between the fibre ends and a boundary. In pressure sensors, the refractive index of the fibre, and hence the intensity of light transmitted, varies according to the mechanical deformation of the fibres caused by pressure. In the pH probe, the amount of light reflected back into the fibres depends on the pH-dependent colour of the chemical indicator in the solution around the probe tip. Finally, in a form of smoke detector, two fibre-optic cables placed either side of a space detect any reduction in the intensity of light transmission between them caused by the presence of smoke.

A simple form of accelerometer can be made by placing a mass subject to the acceleration on a multimode fibre. The force exerted by the mass on the fibre causes a change in the intensity of light transmitted, hence allowing the acceleration to be determined. The typical inaccuracy quoted for this device is ±0.02 g in the measurement range ±5 g and ±2% in the measurement range up to 100 g.

A similar principle is used in probes that measure the internal diameter of tubes. The probe consists of eight strain-gauged cantilever beams that track changes in diameter, giving a measurement resolution of 20 µm.

A slightly more complicated method of effecting light intensity modulation is the variable shutter sensor shown in Figure 13.9. This consists of two fixed fibres with


two collimating lenses and a variable shutter between them. Movement of the shutter changes the intensity of light transmitted between the fibres. This is used to measure the displacement of various devices such as Bourdon tubes, diaphragms and bimetallic thermometers

Yet another type of intrinsic sensor uses cable where the core and cladding have similar refractive indices but different temperature coefficients. This is used as a temperature sensor. Temperature rises cause the refractive indices to become even closer together and losses from the core to increase, thus reducing the quantity of light transmitted.

Refractive index variation is also used in a form of intrinsic sensor used for cryogenic leak detection. The fibre used for this has a cladding whose refractive index becomes greater than that of the core when it is cooled to cryogenic temperatures. The fibre-optic cable is laid in the location where cryogenic leaks might occur. If any leaks do occur, light travelling in the core is transferred to the cladding, where it is attenuated.



Cryogenic leakage is thus indicated by monitoring the light transmission characteristics of the fibre.

A further use of refractive index variation is found in devices that detect oil in water. These use a special form of cable where the cladding used is sensitive to oil. Any oil present diffuses into the cladding and changes the refractive index, thus increasing


light losses from the core. Unclad fibres are used in a similar way. In these, any oil present settles on the core and allows light to escape.

The cross-talk sensor measures several different variables by modulating the inten[1]sity of light transmitted. It consists of two parallel fibres that are close together and where one or more short lengths of adjacent cladding are removed from the fibres. When immersed in a transparent liquid, there are three different effects that each cause a variation in the intensity of light transmitted. Thus, the sensor can perform three separate functions. Firstly, it can measure temperature according to the temperature[1]induced variation in the refractive index of the liquid. Secondly, it can act as a level detector, as the transmission characteristics between the fibres change according to the depth of the liquid. Thirdly, it can measure the refractive index of the liquid itself when used under controlled temperature conditions.

The refractive index of a liquid can be measured in an alternative way by using an arrangement where light travels across the liquid between two cable ends that are fairly close together. The angle of the cone of light emitted from the source cable, and hence the amount of light transmitted into the detector, is dependent on the refractive index of the liquid.

The use of materials where the fluorescence varies according to the value of the measurand can also be used as part of intensity modulating intrinsic sensors. Fluorescence-modulating sensors can give very high sensitivity and are potentially very attractive in biomedical applications where requirements exist to measure very small quantities such as low oxygen and carbon monoxide concentrations, low blood pressure levels etc. Similarly, low concentrations of hormones, steroids etc. may be measured (Grattan, 1989).

Further examples of intrinsic fibre-optic sensors that modulate light intensity are described later in Chapter 17 (level measurement) and Chapter 19 (measuring small displacements).

As mentioned previously, light phase, polarization, wavelength and transit time can be modulated as well as intensity in intrinsic sensors. Monomode cables are used almost exclusively in these types of intrinsic sensor.

Phase modulation normally requires a coherent (laser) light source. It can provide very high sensitivity in displacement measurement but cross-sensitivity to temperature and strain degrades its performance. Additional problems are maintaining frequency stability of the light source and manufacturing difficulties in coupling the light source to the fibre. Various versions of this class of instrument exist to measure temperature, pressure, strain, magnetic fields and electric fields. Field-generated quantities such as electric current and voltage can also be measured. In each case, the measurand causes a phase change between a measuring and a reference light beam that is detected by an interferometer. Fuller details can be found in Harmer (1982) and Medlock (1986).

The principle of phase modulation has also been used in the fibre-optic accelerometer (where a mass subject to acceleration rests on a fibre), and in fibre strain gauges (where two fibres are fixed on the upper and lower surfaces of a bar under strain). These are discussed in more detail in Harmer (1982). The fibre-optic gyroscope described in Chapter 20 is a further example of a phase-modulating device.

Devices using polarization modulation require special forms of fibre that maintain polarization. Polarization changes can be effected by electrical fields, magnetic fields, temperature changes and mechanical strain. Each of these parameters can therefore be measured by polarization modulation.

Various devices that modulate the wavelength of light are used for special purposes, as described in Medlock (1986). However, the only common wavelength-modulating fibre-optic device is the form of laser Doppler flowmeter that uses fibre-optic cables, as described in Chapter 16.

Fibre-optic devices using modulation of the transit time of light are uncommon because of the speed of light. Measurement of the transit time for light to travel from a source, be reflected off an object, and travel back to a detector, is only viable for extremely large distances. However, a few special arrangements have evolved which use transit-time modulation, as described in Medlock (1986). These include instruments such as the optical resonator, which can measure both mechanical strain and temperature. Temperature-dependent wavelength variation also occurs in semiconductor crystal beads (e.g. aluminium gallium arsenide). This is bonded to the end of a fibre-optic cable and excited from an LED at the other end of the cable. Light from the LED is reflected back along the cable by the bead at a different wavelength. Measurement of the wavelength change allows temperatures in the range up to 200°C to be measured accurately. A particular advantage of this sensor is its small size, typically 0.5 mm diameter at the sensing tip. Finally, to complete the catalogue of transit-time devices, the frequency modulation in a piezoelectric quartz crystal used for gas sensing can also be regarded as a form of time domain modulation.

 

13.8.2 Extrinsic sensors

Extrinsic fibre-optic sensors use a fibre-optic cable, normally a multimode one, to transmit modulated light from a conventional sensor such as a resistance thermometer. A major feature of extrinsic sensors, which makes them so useful in such a large number of applications, is their ability to reach places that are otherwise inaccessible. One example of this is the insertion of fibre-optic cables into the jet engines of aircraft to measure temperature by transmitting radiation into a radiation pyrometer located remotely from the engine. Fibre-optic cable can be used in the same way to measure the internal temperature of electrical transformers, where the extreme electromagnetic fields present make other measurement techniques impossible.

An important advantage of extrinsic fibre-optic sensors is the excellent protection against noise corruption that they give to measurement signals. Unfortunately, the output of many sensors is not in a form that can be transmitted by a fibre-optic cable, and conversion into a suitable form must therefore take place prior to transmission. For example, a platinum resistance thermometer (PRT) translates temperature changes into resistance changes. The PRT therefore needs electronic circuitry to convert the resistance changes into voltage signals and thence into a modulated light form, and this in turn means that the device needs a power supply. This complicates the measurement process and means that low-voltage power cables must be routed with the fibre-optic cable to the transducer. One particular adverse effect of this is that the advantage of intrinsic safety is lost. One solution to this problem (Grattan, 1989) is to use a power source in the form of electronically generated pulses driven by a lithium battery. Alternatively (Johnson, 1994), power can be generated by transmitting light down the fibre-optic cable to a photocell. Both of these solutions provide intrinsically safe operation.

Piezoelectric sensors lend themselves particularly to use in extrinsic sensors because the modulated frequency of a quartz crystal can be readily transmitted into a fibre-optic cable by fitting electrodes to the crystal that are connected to a low power LED. Resonance of the crystal can be created either by electrical means or by optical means using the photothermal effect. The photothermal effect describes the principle where, if light is pulsed at the required oscillation frequency and directed at a quartz crystal, the localized heating and thermal stress caused in the crystal results in it oscillating at the pulse frequency. Piezoelectric extrinsic sensors can be used as part of various pressure, force and displacement sensors. At the other end of the cable, a phase-locked loop is typically used to measure the transmitted frequency.

Fibre-optic cables are also now commonly included in digital encoders, where the use of fibres to transmit light to and from the discs allows the light source and detectors to be located remotely. This allows the devices to be smaller, which is a great advantage in many applications where space is at a premium.

 

13.8.3 Distributed sensors

Current research is looking at ways of distributing a number of discrete sensors measuring different variables along a fibre-optic cable. Alternatively, sensors of the same type, which are located at various points along a cable, are being investigated as a means of providing distributed sensing of a single measured variable. For example, the use of a 2 km long cable to measure the temperature distribution along its entire length has been demonstrated, measuring temperature at 400 separate points to a resolution of 1°C.

 

No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)