google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: 16 Flow measurement

Thursday, December 30, 2021

16 Flow measurement

 

The rate at which fluid flows through a closed pipe can be quantified by either measuring the mass flow rate or measuring the volume flow rate. Of these alternatives, mass flow measurement is more accurate, since mass, unlike volume, is invariant. In the case of the flow of solids, the choice is simpler, since only mass flow measurement is appropriate.

 

16.1 Mass flow rate

The method used to measure mass flow rate is largely determined by whether the measured quantity is in a solid, liquid or gaseous state. The main techniques available are summarized below. A more comprehensive discussion can be found in Medlock (1990).

 

16.1.1 Conveyor-based methods

These methods are concerned with measurement of the flow of solids that are in the form of small particles. Such particles are usually produced by crushing or grinding procedures in process industries, and the particles are usually transported by some form of conveyor. This mode of transport allows the mass flow rate to be calculated in terms of the mass of material on a given length of conveyor multiplied by the speed of the conveyor. Figure 16.1 shows a typical measurement system. A load cell measures the mass M of material distributed over a length L of the conveyor. If the conveyor velocity is v, the mass flow rate, Q, is given by:

                                                       Q = Mv/L

As an alternative to weighing the flowing material, a nuclear mass-flow sensor can be used, in which a gamma-ray source is directed at the material being transported along the conveyor. The material absorbs some radiation, and the amount of radiation received by a detector on the other side of the material indicates the amount of material on the conveyor. This technique has obvious safety concerns, and is therefore subject to licensing and strict regulation.


16.1.2 Coriolis flowmeter

The Coriolis flowmeter is primarily used to measure the mass flow rate of liquids, although it has also been successfully used in some gas-flow measurement applications. The flowmeter consists of either a pair of parallel vibrating tubes or else a single vibrating tube that is formed into a configuration that has two parallel sections.

The two vibrating tubes (or the two parallel sections of a single tube) deflect according to the mass flow rate of the measured fluid that is flowing inside. Tubes are made of various materials, of which stainless steel is the most common. They are also manufactured in different shapes such as B-shaped, D-shaped, U-shaped, triangular-shaped, helix-shaped and straight. These alternative shapes are sketched in Figure 16.2(a) and a U-shaped tube is shown in more detail in Figure 16.2(b). The tubes are anchored at two points. An electromechanical drive unit, positioned midway between the two anchors, excites vibrations in each tube at the tube resonant frequency. The vibrations in the two tubes, or the two parallel sections of a single tube, are 180 degrees out of phase. The vibratory motion of each tube causes forces on the particles in the flowing fluid. These forces induce motion of the fluid particles in a direction that is orthogonal to the direction of flow, and this produces a Coriolis force. This Coriolis force causes a deflection of the tubes that is superimposed on top of the vibratory motion. The net deflection of one tube relative to the other is given by d = kfR, where k is a constant, f is the frequency of the tube vibration and R is the mass flow rate of the fluid inside the tube. This deflection is measured by a suitable sensor. A full account of the theory of operation can be found in Figliola (1995).

Coriolis meters give excellent accuracy, with measurement uncertainties of ±0.2% being typical. They also have low maintenance requirements. However, apart from being expensive (typical cost is £4000), they suffer from a number of operational problems. Failure may occur after a period of use because of mechanical fatigue in the tubes. Tubes are also subject to both corrosion caused by chemical interaction with the measured fluid and abrasion caused by particles within the fluid. Diversion of the flowing fluid around the flowmeter causes it to suffer a significant pressure drop, though this is much less evident in straight tube designs.

 

16.1.3 Thermal mass flow measurement

Thermal mass flowmeters are primarily used to measure the flow rate of gases. The principle of operation is to direct the flowing material past a heated element. The mass flow rate is inferred in one of two ways, (a) by measuring the temperature rise in the


flowing material or (b) by measuring the heater power required to achieve a constant set temperature in the flowing material. Typical measurement uncertainty is ±2%.

 

16.1.4 Joint measurement of volume flow rate and fluid density

Before the advent of the Coriolis meter, the usual way of measuring mass flow rate was to compute this from separate, simultaneous measurements of the volume flow rate and the fluid density. In many circumstances, this is still the cheapest option, although measurement accuracy is substantially inferior to that provided by a Coriolis meter.

 

16.2 Volume flow rate

Volume flow rate is an appropriate way of quantifying the flow of all materials that are in a gaseous, liquid or semi-liquid slurry form (where solid particles are suspended in a liquid host), although measurement accuracy is inferior to mass flow measurement as noted earlier. Materials in these forms are carried in pipes, and various instruments can be used to measure the volume flow rate as described below.


No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)