google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: Calibration of measuring sensors and instruments

Thursday, December 2, 2021

Calibration of measuring sensors and instruments

 4.4 Calibration records

An essential element in the maintenance of measurement systems and the operation of calibration procedures is the provision of full documentation. This must give a full description of the measurement requirements throughout the workplace, the instruments used, and the calibration system and procedures operated. Individual calibration records for each instrument must be included within this. This documentation is a necessary part of the quality manual, although it may physically exist as a separate volume if this is more convenient. An overriding constraint on the style in which the documentation is presented is that it should be simple and easy to read. This is often greatly facilitated by a copious use of appendices.

 The starting point in the documentation must be a statement of what measurement limits have been defined for each measurement system documented. Such limits are established by balancing the costs of improved accuracy against customer require[1]ments, and also with regard to what overall quality level has been specified in the quality manual. The technical procedures required for this, which involve assessing the type and magnitude of relevant measurement errors, are described in Chapter 3. It is customary to express the final measurement limit calculated as ลก2 standard devi[1]ations, i.e. within 95% confidence limits (see Chapter 3 for an explanation of these terms).

 The instruments specified for each measurement situation must be listed next. This list must be accompanied by full instructions about the proper use of the instruments concerned. These instructions will include details about any environmental control or other special precautions that must be taken to ensure that the instruments provide measurements of sufficient accuracy to meet the measurement limits defined. The proper training courses appropriate to plant personnel who will use the instruments must be specified.

Having disposed of the question about what instruments are used, the documentation must go on to cover the subject of calibration. Full calibration is not applied to every measuring instrument used in a workplace because BS EN ISO 9000 acknowledges that formal calibration procedures are not necessary for some equipment where it is uneconomic or technically unnecessary because the accuracy of the measurement involved has an insignificant effect on the overall quality target for a product. However, any equipment that is excluded from calibration procedures in this manner must be specified as such in the documentation. Identification of equipment that is in this category is a matter of informed judgement.

 For instruments that are the subject of formal calibration, the documentation must specify what standard instruments are to be used for the purpose and define a formal procedure of calibration. This procedure must include instructions for the storage and handling of standard calibration instruments and specify the required environmental conditions under which calibration is to be performed. Where a calibration proce[1]dure for a particular instrument uses published standard practices, it is sufficient to include reference to that standard procedure in the documentation rather than to repro[1]duce the whole procedure. Whatever calibration system is established, a formal review procedure must be defined in the documentation that ensures its continued effective[1]ness at regular intervals. The results of each review must also be documented in a formal way.

 A standard format for the recording of calibration results should be defined in the documentation. A separate record must be kept for every instrument present in the workplace, irrespective of whether the instrument is normally in use or is just kept as a spare. A form similar to that shown in Figure 4.3 should be used that includes details of the instrument’s description, the required calibration frequency, the date of each calibration and the calibration results on each occasion. Where appropriate, the documentation must also define the manner in which calibration results are to be recorded on the instruments themselves.

The documentation must specify procedures that are to be followed if an instru[1]ment is found to be outside the calibration limits. This may involve adjustment, redrawing its scale or withdrawing an instrument, depending upon the nature of the discrepancy and the type of instrument involved. Instruments withdrawn will either be repaired or scrapped. In the case of withdrawn instruments, a formal procedure for marking them as such must be defined to prevent them being accidentally put back into use.

 Two other items must also be covered by the calibration document. The traceability of the calibration system back to national reference standards must be defined and supported by calibration certificates (see section 4.3). Training procedures must also be documented, specifying the particular training courses to be attended by various personnel and what, if any, refresher courses are required.

All aspects of these documented calibration procedures will be given consideration as part of the periodic audit of the quality control system that calibration procedures are instigated to support. Whilst the basic responsibility for choosing a suitable interval between calibration checks rests with the engineers responsible for the instruments concerned, the quality system auditor will require to see the results of tests that show that the calibration interval has been chosen correctly and that instruments are not going outside allowable measurement uncertainty limits between calibrations. Particularly

important in such audits will be the existence of procedures that are instigated in response to instruments found to be out of calibration. Evidence that such procedures are effective in avoiding degradation in the quality assurance function will also be required.


No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)