google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: 14 Temperature measurement

Wednesday, December 29, 2021

14 Temperature measurement

 

14.2.3 Thermocouple types

The five standard base-metal thermocouples are chromel–constantan (type E), iron–constantan (type J), chromel–alumel (type K), nicrosil–nisil (type N) and copper–constantan (type T). These are all relatively cheap to manufacture but they become inaccurate with age and have a short life. In many applications, performance is also affected through contamination by the working environment. To overcome this, the thermocouple can be enclosed in a protective sheath, but this has the adverse effect of introducing a significant time constant, making the thermocouple slow to respond to temperature changes. Therefore, as far as possible, thermocouples are used without protection.

Chromel–constantan devices give the highest measurement sensitivity of 80 µV/°C, with an inaccuracy of ±0.5% and a useful measuring range of -200°C up to 900°C. Unfortunately, whilst they can operate satisfactorily in oxidizing environments when unprotected, their performance and life are seriously affected by reducing atmospheres. Iron–constantan thermocouples have a sensitivity of 60 µV/°C and are the preferred type for general-purpose measurements in the temperature range -150°C to +1000°C, where the typical measurement inaccuracy is ±0.75%. Their performance is little affected by either oxidizing or reducing atmospheres. Copper–constantan devices have a similar measurement sensitivity of 60 µV/°C and find their main application in measuring subzero temperatures down to -200°C, with an inaccuracy of ±0.75%. They can also be used in both oxidising and reducing atmospheres to measure temper[1]atures up to 350°C. Chromel–alumel thermocouples have a measurement sensitivity of only 45 µV/°C, although their characteristic is particularly linear over the temperature range between 700°C and 1200°C and this is therefore their main application. Like chromel–constantan devices, they are suitable for oxidizing atmospheres but not for reducing ones unless protected by a sheath. Their measurement inaccuracy is ±0.75%. Nicrosil–nisil thermocouples are a recent development that resulted from attempts to improve the performance and stability of chromel–alumel thermocouples. Their thermoelectric characteristic has a very similar shape to type K devices, with equally good linearity over a large temperature measurement range, measurement sensitivity of 40 µV/°C and measurement uncertainty of ±0.75%. The operating environment limitations are the same as for chromel–alumel devices but their long-term stability and life are at least three times better. A detailed comparison between type K and N devices can be found in Brooks, (1985).

Noble-metal thermocouples are always expensive but enjoy high stability and long life even when used at high temperatures, though they cannot be used in reducing atmospheres. Thermocouples made from platinum and a platinum–rhodium alloy (type R and type S) have a low inaccuracy of only ±0.5% and can measure temperatures up to 1500°C, but their measurement sensitivity is only 10 µV/°C. Alternative devices made from tungsten and a tungsten/rhenium alloy have a better sensitivity of 20 µV/°C and can measure temperatures up to 2300°C, though they cannot be used in either oxidizing or reducing atmospheres.

 

14.2.4 Thermocouple protection

Thermocouples are delicate devices that must be treated carefully if their specified operating characteristics are to be maintained. One major source of error is induced strain in the hot junction. This reduces the e.m.f. output, and precautions are normally taken to minimize induced strain by mounting the thermocouple horizontally rather than vertically. It is usual to cover most of the thermocouple wire with thermal insulation, which also provides mechanical protection, although the tip is left exposed if possible to maximize the speed of response to changes in the measured temperature. However, thermocouples are prone to contamination in some operating environments. This means


that their e.m.f.–temperature characteristic varies from that published in standard tables. Contamination also makes them brittle and shortens their life.

Where they are prone to contamination, thermocouples have to be protected by enclosing them entirely in an insulated sheath. Some common sheath materials and their maximum operating temperatures are shown in Table 14.1. Whilst the thermo[1]couple is a device that has a naturally first order type of step response characteristic, the time constant is usually so small as to be negligible when the thermocouple is used unprotected. However, when enclosed in a sheath, the time constant of the combination of thermocouple and sheath is significant. The size of the thermocouple and hence the diameter required for the sheath has a large effect on the importance of this. The time constant of a thermocouple in a 1 mm diameter sheath is only 0.15 s and this has little practical effect in most measurement situations, whereas a larger sheath of 6 mm diameter gives a time constant of 3.9 s that cannot be ignored so easily.

 

14.2.5 Thermocouple manufacture

Thermocouples are manufactured by connecting together two wires of different mater[1]ials, where each material is produced so as to conform precisely with some defined composition specification. This ensures that its thermoelectric behaviour accurately follows that for which standard thermocouple tables apply. The connection between the two wires is effected by welding, soldering or in some cases just by twisting the wire ends together. Welding is the most common technique used generally, with silver soldering being reserved for copper–constantan devices.

The diameter of wire used to construct thermocouples is usually in the range between 0.4 mm and 2 mm. The larger diameters are used where ruggedness and long life are required, although these advantages are gained at the expense of increasing the measurement time constant. In the case of noble-metal thermocouples, the use of large diameter wire incurs a substantial cost penalty. Some special applications have a requirement for a very fast response time in the measurement of temperature, and in such cases wire diameters as small as 0.1 µm (0.1 microns) can be used.

 

14.2.6 The thermopile

The thermopile is the name given to a temperature-measuring device that consists of several thermocouples connected together in series, such that all the reference junctions are at the same cold temperature and all the hot junctions are exposed to the temperature being measured, as shown in Figure 14.7. The effect of connecting n thermocouples together in series is to increase the measurement sensitivity by a factor of n. A typical thermopile manufactured by connecting together 25 chromel–constantan thermocouples gives a measurement resolution of 0.001°C.

 

14.2.7 Digital thermometer

Thermocouples are also used in digital thermometers, of which both simple and intelligent versions exist (see section 14.13 for a description of the latter). A simple digital thermometer is the combination of a thermocouple, a battery-powered, dual slope digital voltmeter to measure the thermocouple output, and an electronic display. This provides a low noise, digital output that can resolve temperature differences as small as 0.1°C. The accuracy achieved is dependent on the accuracy of the thermocouple element, but reduction of measurement inaccuracy to ±0.5% is achievable.

 

14.2.8 The continuous thermocouple

The continuous thermocouple is one of a class of devices that detect and respond to heat. Other devices in this class include the line-type heat detector and heat[1]sensitive cable. The basic construction of all these devices consists of two or more strands of wire separated by insulation within a long thin cable. Whilst they sense temperature, they do not in fact provide an output measurement of temperature. Their function is to respond to abnormal temperature rises and thus prevent fires, equipment damage etc.

The advantages of continuous thermocouples become more apparent if the problems with other types of heat detector are considered. The insulation in the line-type heat


detector and heat-sensitive cable consists of plastic or ceramic material with a negative temperature coefficient (i.e. the resistance falls as the temperature rises). An alarm signal can be generated when the measured resistance falls below a certain level. Alternatively, in some versions, the insulation is allowed to break down completely, in which case the device acts as a switch. The major limitation of these devices is that the temperature change has to be relatively large, typically 50–200°C above ambient temperature, before the device responds. Also, it is not generally possible for such devices to give an output that indicates that an alarm condition is developing before it actually happens, and thus allow preventative action. Furthermore, after the device has generated an alarm it usually has to be replaced. This is particularly irksome because there is a large variation in the characteristics of detectors coming from different batches and so replacement of the device requires extensive on-site recalibration of the system.

In contrast, the continuous thermocouple suffers from very few of these problems. It differs from other types of heat detector in that the two strands of wire inside it are a pair of thermocouple materialsŁ separated by a special, patented, mineral insulation and contained within a stainless steel protective sheath. If any part of the cable is subjected to heat, the resistance of the insulation at that point is reduced and a ‘hot junction’ is created between the two wires of dissimilar metals. An e.m.f. is generated at this hot junction according to normal thermoelectric principles.

The continuous thermocouple can detect temperature rises as small as 1°C above normal. Unlike other types of heat detector, it can also monitor abnormal rates of temperature rise and provide a warning of alarm conditions developing before they actually happen. Replacement is only necessary if a great degree of insulation break[1]down has been caused by a substantial hot spot at some point along the detector’s length. Even then, the use of thermocouple materials of standard characteristics in the detector means that recalibration is not needed if it is replaced. Calibration is not affected either by cable length, and so a replacement cable may be of a different length to the one it is replacing. One further advantage of continuous thermocouples over earlier forms of heat detector is that no power supply is needed, thus significantly reducing installation costs.


No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)