google.com, pub-4497197638514141, DIRECT, f08c47fec0942fa0 Industries Needs: 18 Mass, force and torque measurement

Friday, December 31, 2021

18 Mass, force and torque measurement

 

18.3 Torque measurement

Measurement of applied torques is of fundamental importance in all rotating bodies to ensure that the design of the rotating element is adequate to prevent failure under shear stresses. Torque measurement is also a necessary part of measuring the power transmitted by rotating shafts. The three traditional methods of measuring torque consist of (i) measuring the reaction force in cradled shaft bearings, (ii) the ‘Prony brake’ method and (iii) measuring the strain produced in a rotating body due to an applied torque. However, recent developments in electronics and optic-fibre technology now offer an alternative method as described in paragraph 18.3.4 below.

 

18.3.1 Reaction forces in shaft bearings

Any system involving torque transmission through a shaft contains both a power source and a power absorber where the power is dissipated. The magnitude of the transmitted torque can be measured by cradling either the power source or the power absorber end of the shaft in bearings, and then measuring the reaction force, F, and the arm length L, as shown in Figure 18.10. The torque is then calculated as the simple product, FL. Pendulum scales are very commonly used for measuring the reaction force. Inherent errors in the method are bearing friction and windage torques.

 

18.3.2 Prony brake

The principle of the Prony brake is illustrated in Figure 18.11. It is used to measure the torque in a rotating shaft and consists of a rope wound round the shaft. One end of the rope is attached to a spring balance and the other end carries a load in the form of a standard mass, m. If the measured force in the spring balance is Fs, then the effective force, Fe, exerted by the rope on the shaft is given by:

                                                Fe = mg -  Fs

If the radius of the shaft is Rs and that of the rope is Rr, then the effective radius, Re, of the rope and drum with respect to the axis of rotation of the shaft is given by:

                                                   Re = Rs + Rr

The torque in the shaft, T, can then be calculated as:

                                                   T = FeRe

Whilst this is a well-known method of measuring shaft torque, a lot of heat is generated because of friction between the rope and shaft, and water cooling is usually necessary.


18.3.3 Measurement of induced strain

Measuring the strain induced in a shaft due to an applied torque has been the most common method used for torque measurement in recent years. It is a very attractive method because it does not disturb the measured system by introducing friction torques in the same way as the last two methods described do. The method involves bonding four strain gauges onto the shaft as shown in Figure 18.12, where the strain gauges are arranged in a d.c. bridge circuit. The output from the bridge circuit is a function of the strain in the shaft and hence of the torque applied. It is very important that the positioning of the strain gauges on the shaft is precise, and the difficulty in achieving this makes the instrument relatively expensive.

The technique is ideal for measuring the stalled torque in a shaft before rotation commences. However, a problem is encountered in the case of rotating shafts because a suitable method then has to be found for making the electrical connections to the strain gauges. One solution to this problem found in many commercial instruments is to use a system of slip rings and brushes for this, although this increases the cost of the instrument still further.




18.3.4 Optical torque measurement

Optical techniques for torque measurement have become available recently with the development of laser diodes and fibre-optic light transmission systems. One such system is shown in Figure 18.13. Two black-and-white striped wheels are mounted at either end of the rotating shaft and are in alignment when no torque is applied to the shaft. Light from a laser diode light source is directed by a pair of optic-fibre cables onto the wheels. The rotation of the wheels causes pulses of reflected light and these are transmitted back to a receiver by a second pair of fibre-optic cables. Under zero torque conditions, the two pulse trains of reflected light are in phase with each other. If torque is now applied to the shaft, the reflected light is modulated. Measurement by the receiver of the phase difference between the reflected pulse trains therefore allows the magnitude of torque in the shaft to be calculated. The cost of such instruments is relatively low, and an additional advantage in many applications is their small physical size.


No comments:

Post a Comment

Tell your requirements and How this blog helped you.

Labels

ACTUATORS (10) AIR CONTROL/MEASUREMENT (38) ALARMS (20) ALIGNMENT SYSTEMS (2) Ammeters (12) ANALYSERS/ANALYSIS SYSTEMS (33) ANGLE MEASUREMENT/EQUIPMENT (5) APPARATUS (6) Articles (3) AUDIO MEASUREMENT/EQUIPMENT (1) BALANCES (4) BALANCING MACHINES/SERVICES (1) BOILER CONTROLS/ACCESSORIES (5) BRIDGES (7) CABLES/CABLE MEASUREMENT (14) CALIBRATORS/CALIBRATION EQUIPMENT (19) CALIPERS (3) CARBON ANALYSERS/MONITORS (5) CHECKING EQUIPMENT/ACCESSORIES (8) CHLORINE ANALYSERS/MONITORS/EQUIPMENT (1) CIRCUIT TESTERS CIRCUITS (2) CLOCKS (1) CNC EQUIPMENT (1) COIL TESTERS EQUIPMENT (4) COMMUNICATION EQUIPMENT/TESTERS (1) COMPARATORS (1) COMPASSES (1) COMPONENTS/COMPONENT TESTERS (5) COMPRESSORS/COMPRESSOR ACCESSORIES (2) Computers (1) CONDUCTIVITY MEASUREMENT/CONTROL (3) CONTROLLERS/CONTROL SYTEMS (35) CONVERTERS (2) COUNTERS (4) CURRENT MEASURMENT/CONTROL (2) Data Acquisition Addon Cards (4) DATA ACQUISITION SOFTWARE (5) DATA ACQUISITION SYSTEMS (22) DATA ANALYSIS/DATA HANDLING EQUIPMENT (1) DC CURRENT SYSTEMS (2) DETECTORS/DETECTION SYSTEMS (3) DEVICES (1) DEW MEASURMENT/MONITORING (1) DISPLACEMENT (2) DRIVES (2) ELECTRICAL/ELECTRONIC MEASUREMENT (3) ENCODERS (1) ENERGY ANALYSIS/MEASUREMENT (1) EQUIPMENT (6) FLAME MONITORING/CONTROL (5) FLIGHT DATA ACQUISITION and ANALYSIS (1) FREQUENCY MEASUREMENT (1) GAS ANALYSIS/MEASURMENT (1) GAUGES/GAUGING EQUIPMENT (15) GLASS EQUIPMENT/TESTING (2) Global Instruments (1) Latest News (35) METERS (1) SOFTWARE DATA ACQUISITION (2) Supervisory Control - Data Acquisition (1)